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ABSTRACT 

The object of the present paper is to study the extended generalised φ-recurrent LP-Sasakian manifolds. Also the 

existence of such manifold is ensured by an example. 
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1. INTRODUCTION 

In 1989, K. Matsumoto ([1]) introduced the notion of LP-Sasakian manifolds. Then I. Mihai & R. Rosca ([3]) 

introduced the same notion independently & obtained many interesting results. LP-Sasakian manifolds are also studied by 

U. C. Dey, K. Matsumoto & A. A. Shaikh ([4]), I. Mihai, U. C. De & A. A. Shaikh ([2]) & others ([5], [6], [7]). 

The notion of local symmetry of Riemannian manifolds has been weakened by many authors in several ways to a 

different extent. In [8] Takahasi introduced the notion of locally φ-symmetric Sasakian manifolds as a weaker version of 

local symmetry Riemannian manifolds. In [9], De et al studied the φ-recurrent Sasakian manifold. In [12],  Al-Aqeel et al 

studied the notion of generalized recurrent LP-Sasakian maniofold. Generalised recurrent manifold is also studied by Khan 

[14] in the frame of Sasakian manifold. Recently, Jaiswal et al [11] studied generalised φ-recurrent LP-Sasakian manifold. 

Motivated from the work of Shaikh & Hui, we propose to study extended generalized φ-recurrent LP-Sasakian manifold. 

The paper is organised as follows  

In section 2, we give brief account of LP-Sasakian manifolds. In section 3, we study generalised φ-recurrent LP-

Sasakian manifolds & obtained that the associated vector field of the 1-forms are co-directional with the unit timelike 

vector field ξ. Section 4 is concerned with extended generalised φ-recurrent LP-Sasakian manifolds & found that such a 

manifold is generalised Ricci recurrent provided the 1-forms are linearly dependent, whereas every generalized φ-recurrent 

LP-Sasakian manifold is generalised Ricci recurrent. Among others, we have also proved that such a manifold is of quasi-

constant curvature & the unit timelike vector ξ is harmonic. In section 5, the existence of extended generalised φ-recurrent 

LP-Sasakian manifold is ensured by an example. 

AMS Subject Classification: 53C15, 53C25. 

2. LP SASAKIAN MANIFOLDS  

An n-dimensional differentiable manifold M is said to be an LP-Sasakian manifold ([6],[7],[8]), if it admits a (1,1) 
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tensor field φ, a unit timelike contravariant vector field ξ, and a 1-form ɳ and a Lorentzia metric g which satisfy the 

relations: 

ɳ (ξ) = –1, g (X, ξ) = ɳ (X), φ2X = X + ɳ (X) ξ,                                                                                                    (2.1) 

g (φX,φY) = g (X, Y)+ ɳ (X) ɳ (Y), ▽Xξ = φX,                                                                                                    (2.2) 

(▽Xφ)(Y) = g (X, Y) ξ + ɳ (Y) X + 2ɳ (X) ɳ (Y) ξ,                                                                                             (2.3) 

where ▽ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. It can be easily 

seen that in an LP-Sasakian manifold, the following relations hold: 

φξ = 0, ɳ (φX) = 0, rank φ =  n – 1.                                                                                                                       (2.4)  

Again, if we put 

Ω(X,Y)= g (X, φY), 

for any vector field X,Y then the tensor field Ω(X,Y) is a symmetric (0,2) tensor field ([3],[7]).  Also, since the 

vector field ɳ is closed in an LP-Sasakian ([2], [4]) manifold, we have 

(▽X ɳ)(Y)=Ω(X, Y), Ω(X, ξ) = 0,                                                                                                                         (2.5) 

for any vector field X & Y. 

Let M be an n-dimensional LP-Sasakian manifold with structure (φ, ξ, ɳ, g). Then the following relations hold 

([7]):  

R (X, Y) ξ=ɳ (Y) X – ɳ (X) Y,                                                                                                                               (2.6) 

ɳ (R (X, Y) Z)=g (Y, Z) ɳ (X) – g (X,Z) ɳ (Y),                                                                                                     (2.7) 

S (X, ξ)=(n – 1) ɳ (X),                                                                                                                                           (2.8) 

S (φX,φY)=S (X, Y) + (n – 1) ɳ(X) ɳ (Y),                                                                                                            (2.9) 

(▽W  R)(X,Y) ξ = 2 [ Ω (Y, W) X –  Ω (X, W) Y] – φR (X, Y) W  

–g (Y, W) φX + g (X,W) φY –  

2 [ Ω (X, W) ɳ (Y) –  Ω (Y, W) ɳ (X)] ξ 

–2[ɳ(Y )φX– ɳ(X) φY ] ɳ ( W ),                                                                                                                         (2.10) 

g ((▽WR) (X, Y) Z, U) = –g ((▽WR) (X, Y) U, Z),                                                                                           (2.11)  

for any vector field X,Y,Z,U on M where R is the curvature tensor of the manifold. 

3. GENERALISED Φ RECURRENT LP-SASAKIAN MANIFOLDS 

Definition3.1.  An LP-Sasakian manifold is called generalised φ-recurrent, if its curvature tensor R satisfies the condition: 

φ
2
 ((▽WR) (X,Y)Z) = A(W) R(X, Y)Z + B (W) [g (Y, Z) X – g (X, Z) Y],                                                         (3.1) 
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where A and B are two non-zero l-forms and these are defined as 

A (W)= g (W,ρ), B (W)= g (W,σ), 

where ρ, σ are the vector fields associated to the 1-form A & B respectively. If the 1-form B vanishes identically, 

then the equn. (3.1) becomes 

φ
2
 ((▽WR) (X, Y)Z) = A (W) R(X, Y)Z,                                                                                                               (3.2) 

and such manifold is known as φ-recurrent LP-Sasakian manifold which is studied by Al-Aqeel, De & Ghosh 

[13]. 

Theorem3.1.  Every Generalised φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3) is generalised Ricci recurrent. 

Proof: Using (2.1) in (3.1) & then taking inner product in both sides by U, we have 

g ((▽WR) (X, Y) Z, U) + ɳ ((▽WR) (X, Y) Z) ɳ (U) 

= A (W) g (R (X, Y) Z, U) + B (W) [g (Y, Z) g (X, U) – g (X, Z) g (Y, U)]                                                         (3.3) 

Let {ei, i = 1, 2,..., n} be an orthonormal basis at any point P of the manifold M. Setting X=U=ei, in (3.3) & taking 

summation over i, 1< i < n, we get 

                          n 

(▽WS)(Y,Z)+ ∑ ɳ ((▽WR)(ei, Y)Z) ɳ (ei)=0.                                                                                                                            

                         i=1 

=A(W)S(Y,Z)+(n–3)B(W)g(Y,Z).                                                                          (3.4)                                                                                                      

In view of (2.9) & (2.10), the expression 

n 

∑ɳ((▽WR) (ei, Y)Z)  ɳ (ei)=0.                                                                                                                           (3.5) 

i=1 

By virtue of (3.5), (3.4) yields 

(▽WS) (Y, Z) = A (W) S(Y, Z) + (n – 3) B (W) g (Y, Z),                                                                                      (3.6)  

for all W, Y, Z. This completes the proof. 

Corollary 3.1. Every generalised φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3) is an Einstein manifold. 

Proof: Replacing Z by ξ in (3.6) & using (2.8), we obtain 

(n –1)Ω(W, Y) – S (Y, φW) = (n – 1) A (W) ɳ(Y) + (n – 3) B (W) ɳ (Y).                                                          (3.7) 

Replacing Y by φY in (3.7) & then using (2.2) & (2.9),  we get 

S (Y, W) = (n – 1) g (Y, W),                                                                                                                                  (3.8) 
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for all Y & W. This completes the proof. 

Theorem.3.2. In a generalized φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3), the Ricci tensor S along the 

associated vector field of the 1-form A is given by 

S (Z, ρ) =( ½)[rA (Z) + (n - 3)(n - 4) B (Z)].                                                                                                       (3.9) 

Proof: Contracting over Y & Z in (3.6), we get 

dr (W) = A (W) r + (n – 3)(n –2) B (W),                                                                                                            (3.10) 

for all W. 

Again, contracting over W & Y in (3.6), we have 

(1/2) dr (Z) = S (Z,ρ) + (n – 3) B (Z).                                                                                                                 (3.11) 

By virtue of (3.10) & (3.11), we get (3.9).This proves the theorem. 

Theorem.3.3. In a generalised φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3), the associated vector field 

corresponding to the 1-forms A & B are co-directional with the unit timelike vector field ξ.  

Proof: Setting Z=ξ  in (3.9) & using (2.8), we get 

ɳ��� = ���������	�
������� 
 ɳ���.                                                                                                                                     (3.12) 

This completes the proof. 

4. EXTENDED GENERALIZED Φ-RECURRENT LP-SASAKIAN MANIFOLDS  

Definition 4.1.([12]). An LP-Sasakian manifold is said to be extended generalised φ-recurrent, if its curvature 

tensor R satisfies the condition 

φ
2
 ((▽WR) (X, Y)Z) = A (W) φ2(R(X,Y)Z)+B (W) [g (Y, Z) φ2(X) – g (X, Z) φ2(Y)],                                       (4.1) 

where A and B are two non-zero 1-forms and these are defined as 

A (W) = g (W, ρ),  B (W) = g (W, σ) 

and ρ, σ are vector fields associated to the 1-form A & B respectively.  

Theorem 4.1. Let (Mn,g) (n > 3) be an extended generalised φ-recurrent LP-Sasakian manifold. Then such a 

manifold is a generalised Ricci recurrent LP-Sasakian manifold if the associated 1-forms are linearly dependent & the 

vector fields of the associated 1-forms are of opposite directions. 

Proof: Using (2.1) in (4.1) & then taking inner product on both sides by U,  we have 

g((▽WR)(X, Y)Z, U) + ɳ ((▽WR) (X, Y)Z) ɳ(U)  

= A (W) [g(R (X, Y)Z, U) + ɳ(R (X, Y)Z) ɳ (U)] 

+B (W) [g (Y, Z) g(X, U) – g (X, Z) g(Y, U) 
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+[g(Y, Z)ɳ(X) – g (X, Z )  ɳ(Y ) ɳ(U )].                                                                                                                (4.2) 

Let {ei, i=1,2,...,n} be an orthonormal basis at any point P of the manifold M. Setting X=U=ei, in (4.2)  & taking 

summation over i, 1 < i < n, we get 

 (▽WS)(Y,Z)+ ∑ ɳ ((▽WR)(ei, Y)Z) ɳ (ei)=0. 

= A (W) [S(Y, Z)+ ɳ (R) ξ (Y, Z)] 

+B (W) [(n – 2) g (Y, Z) –ɳ (Y) ɳ (Z)].                                                                                                                (4.3) 

In view of (2.9) & (2.10), the expression 

n 

∑  ɳ ((▽W R) (ei, Y)Z) ɳ (ei)=0.                                                                                                                           (4.4) 

i=1 

By virtue of (2.7) & (4.4), (4.3) yields 

(▽W S)(Y,Z) = A (W) S(Y,Z) + (n – 2) B (W) g (Y,Z) 

–[A(W)+ B (W)]ɳ (Y) ɳ (Z).                                                                                                                                 (4.5) 

If the associated vector fields of the 1-forms are of opposite directions, i.e., A (W) + B (W) = 0, then (4.5) 

becomes 

(▽WS)(Y,Z) = A (W) S(Y, Z) + (n – 2) B (W) g (Y, Z).                                                                                        (4.6) 

This completes the proof. 

Theorem 4.2. Every extended generalised φ-recurrent LP-Sasakian manifold (Mn, g) (n > 3) is an Einstein 

manifold. 

Proof: Setting Z=ξ  in (4.5) & then using (2.2) & (2.8), we get 

(n – 1) Ω (W, Y) – S(Y, φW)=[nA (W) + (n – 1) B (W)]ɳ (Y).                                                                           (4.7) 

Replacing Y by φY in (4.7) & using (2.2), (2.4) & (2.9), we obtain 

S (Y, W) = (n – 1) g (Y, W),                                                                                                                                 (4.8) 

for all Y, W. This completes the proof. 

Theorem 4.3. In an extended generalised φ-recurrent LP-Sasakian manifold (Mn, g) (n > 3), the timelike vector 

field ξ  is harmonic provided the vector fields associated to the 1-forms are codirectional. 

 Proof: In an extended generalised φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3), the relation (4.2) holds.  

Replacing Z by ξ in (4.2), we have 

(▽W R) (X, Y) ξ = A (W) R (X, Y) ξ + B (W)[ɳ(Y) X – ɳ (X) Y] 

 = [A (W) + B (W)] [ɳ (Y) X – ɳ(X) Y].                                                                                                               (4.9) 
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By virtue of (2.10) & (4.9), we have 

φR (X, Y) W = [A (W) + B (W)] [ɳ (X) Y – ɳ (Y) X] 

+2 [Ω (Y, W) X – Ω (X, W) Y] – φR (X, Y) W 

–g (Y, W) φX + g (X, W) φY 

–2 [Ω (X, W) ɳ(Y) – Ω(Y, W) ɳ(X)] ξ 

–2[ɳ(Y )φX – ɳ(X) φY ] ɳ ( W ).                                                                                                                        (4.10) 

Taking inner product in both sides of (4.10) by φU  & then using (2.2),  we obtain 

Ŕ (X, Y, W, U) = [A (W) + B (W)] [Ω (Y, U) ɳ(X) – Ω(X,U) ɳ (Y)] 

+2 [Ω (Y, W) Ω (X, U) – Ω (X, W) Ω (Y, U)] 

–g (Y, W) g (X, U) + g (X, W) g (Y, U) 

+2[g (X, W ) ɳ (Y) ɳ (U) – g (Y, W ) ɳ(X ) ɳ(U ) 

+g(Y,U) ɳ(W) ɳ(X) – g (X, U ) ɳ(W ) ɳ(Y )],                                                                                                      (4.11) 

where Ŕ (X,Y, W,U) = g(R(X,Y)W,U). 

Contracting over X & U in (4.11), we get 

S (Y, W) = 2[ψ Ω(Y,W) – g (φY,φW)] –ψ [A (W)+ B (W)] ɳ(Y) 

  –(n–3)g(Y, W) – 2 (n – 2) ɳ (Y) ɳ(W),                                                                                              (4.12) 

where ψ = Tr.φ. 

Next setting Y=ξ in (4.12), we get 

ψ [A (W) + B (W)] = 0,                                                                                                                                     (4.13) 

which yields ψ =0, because the vector fields associated to the 1-forms are codirectional. Consequently, ξ  is 

harmonic. This completes the proof. 

Theorem 4.4. Every extended generalised φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3) is ɳ--Einstein, if the 

vector fields  associated to the 1-forms are codirectional. 

Proof: Since in an generalised φ-recurrent LP-Sasakian manifold (Mn,g) (n > 3), the timelike vector field ξ is 

harmonic i.e., ψ = 0 for A(W) ≠ – B(W), it follows from (4.12) that 

S (Y, W) =– (n –1) g (Y, W) – 2(n – 1) ɳ (Y) ɳ (W),                                                                                         (4.14) 

which proves the theorem. 

Definition 4.2. An LP-Sasakian manifold (Mn,g) (n > 3) is said to be a manifold of quasi-constant curvature, if its 

cuvature tensor Ŕ of type (0,4) satisfies: 
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Ŕ(X, Y, W, U) = a[g (Y, W) g (X, U) – g (X, W) g (Y, U)] 

+b[g (Y, W) ɳ (X) ɳ (U) – g (X, W) ɳ(Y) ɳ(U) 

+g(X, U) ɳ(W) ɳ(Y) – g (Y, U) ɳ(W) ɳ(X)],                                                                                                        (4.15) 

where a & b are scalars of which a, b≠ 0 & Ŕ(X, Y, W, U)= g(R(X, Y)W, U). 

The notion of a manifold of quasi-constant curvature was first introduced by Chen & Yano [10] in 1972 for a 

Riemannian manifold. 

Theorem 4.5. An extended generalised φ-recurrent LP-Sasakian manifold (Mn, g) (n > 3) is a manifold of quasi-

constant curvature with associated scalars a=–1, b= –2, if & only if 

[A (W) + B (W)] [Ω (Y, U) ɳ (X) - Ω (X, U) ɳ(Y)] 

= 2 [Ω(X, W) Ω(Y, U) - Ω(Y, W) Ω (X, U)],                                                                                                       (4.16) 

holds for all vector fields X, Y, U, W on M. 

Proof: In an extended generalised φ-recurrent LP-Sasakian manifold    (Mn, g) (n > 3), the relation (4.11) is true. If 

the manifold of under consideration is of quasi-constant curvature with associated scalars a=–1, b=–2, then the relation 

(4.16) follows from (4.11). 

Conversely, if in an extended generalised φ-recurrent LP-Sasakian manifold, the relation (4.16) holds, then it 

follows from (4.11) that the manifold is of quasi-constant curvature with associated scalars a=–1, b=–2. This proofs the 

theorem. 

Theorem 4.6. Let (Mn,g) (n > 3) be an extended generalised φ-recurrent LP-Sasakian manifold. Then the 

associated vector fields of the 1-form are related by 

ɳ��� = ����
������
������� 
 ɳ���.  

Proof: Changing X,Y,W cyclically in (4.2) & adding them, we get by virtue of Bianchi's identity that   

A (W) [R (X, Y) Z + ɳ (R (X, Y) Z) ξ] +B (W)[g (Y, Z) X – g (X, Z) Y + g (Y, Z) ɳ (X) ξ – g (X, Z) ɳ (Y) ξ] 

+A (X) [R (Y, W) Z + ɳ (R (Y, W) Z) ξ] +B (X) [g (W, Z) Y – g (Y, Z) W + g (W, Z) ɳ (Y) ξ – g (Y, Z) ɳ(W) ξ] 

+A (Y) [R (W, X) Z +  ɳ (R (W, X) Z) ξ] +B (Y) [g (X, Z) W –g (W, Z) X + g (X, Z) ɳ(W) ξ – g  

(W, Z) ɳ(X) ξ] = 0.                                                                                                                                               (4.17) 

Taking inner product in both sides of (4.12) by U & then contracting over Y & Z, we obtain 

A (W) [S (X, U) + (n – 2) ɳ(X) ɳ(U)]+A (X) [S (U, W) + (n – 2)  ɳ(W) ɳ(U)] 

+ (n – 2) B (W) [g (X, U) + ɳ(X) ɳ(U)] – (n – 2) B (X) g (φW, φU) 

=  Ŕ (W, X, U, ρ).                                                                                                                                                (4.18) 

Again, contracting over X & U in (4.13), we get 
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S(W,ρ)=(1/2)(r–n+2)A(W)–(1/2)(n–2)2B(W)–(1/2) (n–2) ɳ(W) [ɳ(ρ)+ ɳ(σ)].                                                 (4.19) 

Setting W=ξ, we obtain 

ɳ��� = ����
������
������� 
 ɳ���.                                                                                                                                    (4.20) 

This completes the proof. 

5. EXISTENCE OF GENERALIZED Φ-RECURRENT LP-SASAKIAN MANIFOLDS  

Ex 5.1. We consider a 3-dimensional manifold M = {(x,y,z)ƐR3}, where (x,y,z) are the standard coordinates of R3.  

Let {e1,e2,e3} be linearly independent global form of M,  given by 

e1 = ez (∂/∂x),  e2= ez-ax (∂/∂y),  e3 = ∂/∂z, where a is non-zero constant. 

Let g be the Lorentzian metric defined by  

g(∂/∂x,∂/∂x) = e-2z,  g(∂/∂y,∂/∂y) = e2(ax-z), g (∂/∂z,∂/∂z) = –1. 

g(∂/∂x,∂/∂y) = 0,  g(∂/∂y,∂/∂z) = 0, g (∂/∂z,∂/∂x) =0. 

             Let ɳ be the 1-form defined by ɳ (U) = g(U,e3), for any U Ɛ χ(M).  Let φ be the (1, 1) tensor field defined by 

φ (ez ∂/∂x) = –ez ∂/∂x,  φ (ez-ax∂/∂y) = – ez-ax ∂/∂y,  φ (∂/∂z) = 0. 

Then using the linearity of φ and g, we have 

ɳ (∂/∂z) = –1,  φ2U = U + ɳ(U) e3, g (φU,φW) = g (U,W) + ɳ (U) ɳ (W), 

for any U, W Ɛ χ(M).  

Thus for ∂/∂z=ξ, (φ,ξ,ɳ,g) defines a Lorentzian paracontact structure on M.  

Let ▽ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor. Then 

we have, 

[e1, e2] = –aeze2,  [e1, e3] = –e1, [e2, e3] = –e2. 

Taking e3 = ξ and using Koszul formula for the Lorentzian metric g, we can easily calculate 

▽e1 e1 = –e3,    ▽ e2 e1 = aez e2,   ▽ e3 e1 = 0, 

▽e1 e2 = 0,   ▽e2 e2 = –aeze1 – e3,  ▽e3 e2 = 0,  

▽e1 e3 = –e1, ▽e2e3 = –e2, ▽e3e3 = 0.  

From the above, it can be easily seen that (φ,ξ,ɳ,g) is an LP-Sasakian structure on M. Consequently M3(φ,ξ,ɳ,g) is 

an LP-Sasakian manifold. Using the above relations, we can easily calculate the non- vanishing components of the 

curvature tensor as follows:  

R (e2, e3) e3 = –e2, R(e2, e3) e2 = –e3, R(e1, e3) e3   = –e1  
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R(e1, e3) e1 = –e3, R (e1, e2) e1 = – (1 – a2e2z) e2, R (e1, e2) e2 = (1 – a2e2z) e1,  

and the components which can be obtained from these by the symmetry properties. Since {e1,e2,e3} forms a basis, 

any vector field X,Y,Z  Ɛ χ(M) can be written as:  

X = a1e1+ b1e2+ c1e3, Y = a2e1+ b2e2+ c2e3, Z = a3e1+ b3e2+ c3e3, where ai,bi,ci Ɛ R
+ ; i = 1, 2,3.  

This implies that  

R (X, Y) Z = le1 + me2 + ne3, 

where  l = (a1b2 –a2b1) (1–a2 e2z)b3–(a1 c2+a2 c1)c3, 

m  = (a1b2 –a2b1) (1–a2 e2z)a3+(b1 c2–b2 c1)c3,  

n =  (a1c2 –a2c1)a3+ (b1 c2–b2 c1)b3, 

	G (X, Y) Z = pe1 + qe2 + re3,  

where p = (b1b2 –c2c3)a1– (b1 b3–c1 c3)a2,  

q = ( a 2a3–c2c3)b1– (a1 a3–c1 c3)b2,  

 r = ( a 2a3+b2b3)c1– (a1 a3+b1 b3)c2. 

By virtue of the above, we have  

(▽e1 R)(X,Y) Z  =  –(1e3 + ne1),  

(▽ e2 R) (X, Y) Z  =  –aez me1 + (aez l– n) e2 – me3, 

(▽ e3 R) (X, Y) Z  =  2a2e2z (a1b2 –a2b1)(a3e2–b3 e1). 

Hence, φ 2
 ((▽e1  R) (X, Y) Z)  =  –ne1,    

φ 2 ((▽e2R) (X, Y) Z)  =  –aezme1 + (aezl – n) e2,  

φ 2 ((▽ e3 R) (X, Y) Z)   =  2a2e2z (a1b2 –a2b1)(a3e2–b3 e1), 

 φ 2 (R (X,Y) Z)  = 1e1 + me2,  

φ 2 (G (X, Y) Z)  =  pe1 + qe2. 

Let us choose the non-vanishing 1-forms as  

A(e1)  =  nq/(lq+mp) ;   B(e1)  = –mn /(lq+mp) ;  

A(e2) = [pn–(lp+mq)aez]/ (lq+mp) ;  B(e2) = [ln–(l2–m2)aez] /(lq+mp)  

A(e3) = [2a2ez(a1 b–a2 b1)(a3p–b3q)]/(lq+mp) ; 

B(e3)  = –[2a2ez(a1 b2–a2 b1)(a3l+b3m)]/(lq+mp) 

Thus,we  have 
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φ
2((▽ ei R)(X,Y)Z)  = A(ei)φ

2(R(X,Y)Z)+B(ei)φ
2(G(X,Y)Z); i=1,2,3. 

Consequently, the manifold under consideration is an extended generalized φ-recurrent LP-Sasakian manifold. 

This leads to the following:  

Theorem 5.1. There exists an extended generalised φ-recurrent LP Sasakian manifold which is not generalised φ- recurrent 

LP-Sasakian manifold. 
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